In this our aim is to determine which integers can be expressed as the sum of given number of squares ie; which have the form $x_1^2+x_2^2+\cdots+x_k^2$, where each $x_i \in \mathbb{Z}$, for a given $k$. Definition: For each integer $k \ge 1$, let $S_k=\{n|n=x_1^2+x_2^2+\cdots+x_k^2$ for some $x_1,x_2,\ldots,x_k \in \mathbb{Z} \}$ , the set of all sum of $k$ squares. Example: $S_1=\{0,1,4,9,\ldots\}$ is the set of all squares. By inspection $S_2$, the set of sum of two squares contains 0,1,2,4,5 and 8 but not 3,6, or 7. Lemma: The set $S_2$ contains, the sum of two squares is closed under multiplication ie; if $s,t \in S_2$ , then $st \in S_2$. Proof:Let $s=a_1^2+b_1^2$ and $t=a_2^2+b_2^2$ be the elements of $S_2$, where $a_1,b_1,a_2,b_2 \in \mathbb{Z}$. Then the identity $$(a_1^2+b_1^2)(a_2^2+b_2^2)=(a_1a_2-b_1b_2)^2+(a_1b_2+b_1a_2)^2$$ This shows that $st \in S_2$ Example: We have $8=2^2+2^2$ and $10=3^2+1^2$ so $8.10=80=(2.3-2.1)^2+(2.1+2.3)^2=4^2+8^2$ Note: an equivalent ident...
Comments
Post a Comment